Welcome! Here are the website rules, as well as some tips for using this forum.
Need to contact us? Visit https://heatinghelp.com/contact-us/.
Click here to Find a Contractor in your area.
Series Loop vs 2 Pipe Direct System
stupidhomeowner
Member Posts: 20
Hello to all, Im Gary from Chicago, just looking for some help with my radiator issue. I have a hot water boiler with 3 zones and a pump for each zone and a Taco switching relay. 1 zone goes to my 1 story addition on the back of the house with a crawl space underneath.
To make a long story short, I replaced the cast iron baseboard radiators that were in that room and added 2 walls of slant fin copper radiators (approximately 20' total). The problem is when the temp drops below 25f outside, the thermostat in this backroom won't go above 65f. We do have a little electric oil radiator that we plug in and that gives off enough added btus to allow the thermostat to reach whatever desired temp.
I have 10' of extra radiators I am getting ready to install in that room on another wall. My main question is how would you guys run the piping. Currently I have it in what I understand is a 2 pipe direct system. I eliminated all the old galvanized piping that was in the crawlspace and changed it to 3/4" copper.
I am wondering if I should keep the piping the same way when I add this extra 10' or run it in a series loop. The extra 10' of radiator will bring me to about 30' total. The crawlspace is not below grade and is only insulated with very thin fiberglass insulation between the floor joists. I did insulate all the copper with 1" fiberglass( 1" or 1/2", cant remember).
Here is a diagram of the piping that I currently have.
To make a long story short, I replaced the cast iron baseboard radiators that were in that room and added 2 walls of slant fin copper radiators (approximately 20' total). The problem is when the temp drops below 25f outside, the thermostat in this backroom won't go above 65f. We do have a little electric oil radiator that we plug in and that gives off enough added btus to allow the thermostat to reach whatever desired temp.
I have 10' of extra radiators I am getting ready to install in that room on another wall. My main question is how would you guys run the piping. Currently I have it in what I understand is a 2 pipe direct system. I eliminated all the old galvanized piping that was in the crawlspace and changed it to 3/4" copper.
I am wondering if I should keep the piping the same way when I add this extra 10' or run it in a series loop. The extra 10' of radiator will bring me to about 30' total. The crawlspace is not below grade and is only insulated with very thin fiberglass insulation between the floor joists. I did insulate all the copper with 1" fiberglass( 1" or 1/2", cant remember).
Here is a diagram of the piping that I currently have.
0
Comments
-
You could put those 3 in series, feed one to the next to the next
with your proposed piping you may need to add balance valves to get adequate flow to each of the 3Bob "hot rod" Rohr
trainer for Caleffi NA
Living the hydronic dream0 -
Agree with @hot_rod . You only need a total flow of about 1.7 gallons which 3/4 will easily do. So you can put them in series or pipe them as shown and install two balance valves. 3/4 copper will support about 70' of baseboard so your well within that.
I would suggest adding insulation between the floor joists will be a big help0 -
Thanks for the replies gents, I am not educated on balancing valves at all, where would I install those? Can those be in the crawlspace or do they have to be up by the radiators? Do you guys think it’s necessary?0
-
Maybe you should start with a heat loss calculation to see how much baseboard you need to cover the heat loss.0
-
mattmia2 said:Maybe you should start with a heat loss calculation to see how much baseboard you need to cover the heat loss.0
-
Slant Fin has a calculator. There are others too. Is this fin tube on its own zone? Fin tube heats very differently than standing cast iron radiators and if the 2 are on the same thermostat it will be very difficult to balance the 2.0
-
mattmia2 said:Slant Fin has a calculator. There are others too. Is this fin tube on its own zone? Fin tube heats very differently than standing cast iron radiators and if the 2 are on the same thermostat it will be very difficult to balance the 2.0
-
This is the piping design I would use for your situation. All 3/4" until it gets to "shared piping" back to the boiler room. Shared piping or manifold may need to be larger based on required gallon per minute (GPM) requirements.
Edward Young Retired
After you make that expensive repair and you still have the same problem, What will you check next?
0 -
How many feet of cast baseboard did you remove from the room? The copper fin tube of the same length should do the job.
30' of BB should get you around 15,000 btu/ hr, @500 or so btu/ ft.
The room is around 308 sq ft? Seems like a very high load in the room, 50 btu/ sq. ft?Bob "hot rod" Rohr
trainer for Caleffi NA
Living the hydronic dream0 -
EdTheHeaterMan said:This is the piping design I would use for your situation. All 3/4" until it gets to "shared piping" back to the boiler room. Shared piping or manifold may need to be larger based on required gallon per minute (GPM) requirements.So the 3/4” copper supply and return change to 1” galvanized once it leaves the crawl and heads back to the boiler.I like this option of piping but I’m just worried that the last radiator in the chain would be running colder water than the first.0
-
The last radiator in the series will run on cooler water, but if theyare all in the same space it doesn't really matter.. Do, however, try to adjust the flow rate so that you get the desired delta T from the loop.Br. Jamie, osb
Building superintendent/caretaker, 7200 sq. ft. historic house museum with dependencies in New England0 -
Jamie Hall said:The last radiator in the series will run on cooler water, but if theyare all in the same space it doesn't really matter.. Do, however, try to adjust the flow rate so that you get the desired delta T from the loop.0
-
@stupidhomeowner
baseboard will produce around 550 btus/foot of finned length. get the total btu by adding up the installed baseboard footage x 550 and divide the total btus by 10000 to get the gpm of water flow you need.
so for 30' it would be (30 x 550) divided by 10000=1.65gpm. Not super critical in you application. You just don't want to over pump excessively.1 -
There should be somewhere--probably down near the boiler-- valves which can be adjusted to change the flow. As @EBEBRATT-Ed said, you want around 1.6 gpm. But ut us just as satisfactory to measure the temperature difference of the pipes between the beginning of the loop and the end. That's delta T, and you want somewhere around 15 to 20 dgrees FBr. Jamie, osb
Building superintendent/caretaker, 7200 sq. ft. historic house museum with dependencies in New England0 -
Jamie Hall said:There should be somewhere--probably down near the boiler-- valves which can be adjusted to change the flow. As @EBEBRATT-Ed said, you want around 1.6 gpm. But ut us just as satisfactory to measure the temperature difference of the pipes between the beginning of the loop and the end. That's delta T, and you want somewhere around 15 to 20 dgrees F0
Categories
- All Categories
- 86.3K THE MAIN WALL
- 3.1K A-C, Heat Pumps & Refrigeration
- 53 Biomass
- 422 Carbon Monoxide Awareness
- 90 Chimneys & Flues
- 2K Domestic Hot Water
- 5.4K Gas Heating
- 100 Geothermal
- 156 Indoor-Air Quality
- 3.4K Oil Heating
- 63 Pipe Deterioration
- 916 Plumbing
- 6K Radiant Heating
- 381 Solar
- 14.9K Strictly Steam
- 3.3K Thermostats and Controls
- 54 Water Quality
- 41 Industry Classes
- 47 Job Opportunities
- 17 Recall Announcements